

Idaho National Engineering and Environmental Laboratory

Fundamental UNEX Chemistry

Project #81995

R. S. Herbst, D. R. Peterman, T. A. Luther, T. G. Garn, Idaho National Engineering & Environmental Laboratory

V. A. Babain, I. V. Smirnov Khlopin Radium Institute, St. Petersburg, Russia

E. S. Stoyanov
Institute of Catalysis, Novosibirsk, Russia

January 2005

Background: The UNEX Solvent System

- Chlorinated Cobalt Dicarbollide (CCD) for Cs extraction.
- Polyethylene glycol (PEG-400) for Sr extraction.
- Diphenyl-N,N'-di-n-butylcarbamoylmethylphosphine oxide (CMPO) for actinide extraction.
- Current diluent is phenyltrifluoromethyl sulfone (FS-13).

HO(CH₂CH₂O)₈₋₁₀H

RESEARCH OBJECTIVES

- UNEX Process indeed works, but how? what fundamental chemistry occurs in the process?
- The objective of this project is to define the underlying chemical phenomena (mechanisms) operative during the extraction process including-
 - stoichiometry of extracted species
 - effects of water, nitrate, and acid
 - solvent effects

Extraction in CCD Systems

$$[\mathbf{M}^{\mathrm{n+}}]_{aq} + n[\mathbf{H}^{+} \cdot b\mathbf{H}_{2}\mathbf{O}]_{org} + n[\mathbf{CCD}^{-}]_{org} \bullet$$

$$[\mathbf{M}^{n+}]_{org} + n[\mathbf{H}^{+}]_{aq} + b\mathbf{H}_2\mathbf{O} + n[\mathbf{CCD}^{-}]_{org}$$

Acid (4 M)	b
HClO ₄	5.3 ± 0.04
HNO ₃	5.7 ± 0.06
H_2SO_4	5.4 ± 0.03
^a Literature	5.5

^a Vanura, P.; Makrlik, E.; Rais, I.; Kyrs, M. Coll. Czech. Chem. Commun. 1982, Vol. 5 (47), 1444-1464

Cs Extraction in CCD Systems - Organic Phase Acid/Water Content

Initial Org. Phase: ~ 0.16 M CsCCD in FS-13

Acid concentration (Potentiometric Titration)

Water concentration (Karl Fischer Titration)

Extraction Dependency on Aqueous [HNO₃]

Organic Phase: 0.08 M CCD + 0.016 M PEG-400 in FS-13 (25 °C)

Organic Phase Strontium Complex

- IR spectroscopic studies of the organic phase:
 - Sr⁺² saturated solution of
 0.05 M CCD in DCE (w/o PEG):
 [Sr⁺²•8H₂O] CCD⁻₂
 - Sr⁺² saturated solution of
 0.05 M CCD & 0.05 M PEG-400 in DCE:
 [Sr⁺²•PEG] CCD⁻² 1:1 Sr:PEG Complex

Organic Phase Strontium Complex

Ethereal oxygen's in PEG displace 8 H₂O molecules from 1st coordination sphere. Consistent with Sr⁺² extraction data vs. PEG size:

<u></u>	0	PE
	h	Ò
	M ^{b+}	ÓН
-0) Q	OH

	Ave. n	D_{Sr}	
PEG-300	6-7	4.0	
PEG-400	8-10	4.1	
PEG-1500	33-34	0.6	

HO(CH₂CH₂O)_nH

ACTINIDE EXTRACTION BY CMPO:

Distribution Data

Aq: 3M HNO₃ Org: 0.005 M CMPO in F-3

F

Extractant	D _{Am}	D _{Eu}	K _{HNO3} , Ex
Oct Ph CMPO	0.05	0.03	2.0 a
Ph ₂ CMPO	0.45	0.30	0.76 a

^a Data of Horowitz, et. al. 1986

H — D Exchange

- Exchange of protons for deuterium in the methylene bridge observed in NMR spectra of both CMPO compounds.
- Exchange initiated using 3 M HNO₃, DNO₃, HCIO₄, DCIO₄, LiNO₃ + La(NO₃)₃, or NaNO₃ + La(NO₃)₃, each in D_2O .
- Acidity of bridge protons indicative of compound basicity.

H — D Exchange

D_{Am} vs. H-D Exchange Rate (•)

Extractant	D_{Am}	• (hrs)
Oct Ph CMPO	0.05	24
Ph ₂ CMPO	0.45	6 - 7

SUMMARY

 In the HCCD/PEG-400 system, simultaneous Cs/Sr extraction can be represented by the following (simplified) reactions:

$$[Cs^+]_{aq} + [HCCD]_{org} \cdot [H^+]_{aq} + [CsCCD]_{org}$$

$$[Sr^{2+}]_{aq} + [PEG]_{org} + 2[HCCD]_{org} \cdot 2[H^{+}]_{aq} + [Sr \cdot PEG \cdot CCD_{2}]_{org}$$

 H-D exchange in the methylene bridge of CMPO has been observed. Rate of exchange qualitatively interpreted to indicate bidentate coordination of hydrated proton with CMPO.

Research Highlights

- 5 Journal Articles published/accepted/submitted thus far.
 - 2 drafted
 - Several others planned
- 6 Technical presentations at National/International meetings
- 1 Graduate student supported
- Cs/Sr Extraction results used to define solvent composition for spent nuclear fuel treatment in the DOE NE Advanced Fuel Cycle Initiative

Future Research Direction

- Emphasis in FY-05 (final year of project) on further evaluation of actinide/lanthanide interactions with CMPO in the UNEX system:
 - Non-synergistic (independent) of PEG?
 - Anion stabilization (CCD vs. to NO₃)?
- Verify of bidentate coordination of CMPO and hydrated H⁺ in the organic phase.
- Evaluation of organic phase structures via IR and NMR spectroscopic techniques.

Acknowledgments

United States

Department of Energy
Environmental
Management Science
Program and Contract
DE-AC07-99ID13727